On certain arithmetical Dirichlet series

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Critical Values of Certain Dirichlet Series

We investigate the values of several types of Dirichlet series D(s) for certain integer values of s, and give explicit formulas for the value D(s) in many cases. The easiest types of D are Dirichlet L-functions and their variations; a somewhat more complex case involves elliptic functions. There is one new type that includes ∑∞ n=1(n +1) for which such values have not been studied previously. 2...

متن کامل

On a functional equation satisfied by certain Dirichlet series

by giving a representation of L(s) in terms of Hurwitz zeta functions. That representation allowed us to get some information about zeros and poles; nevertheless no functional equation could be deduced from it. In this paper following a classical argument we obtain for L(s) as above, under suitable hypothesis, a functional equation of Riemann’s type. More precisely, let us consider the Dirichle...

متن کامل

On a Relation between Sums of Arithmetical Functions and Dirichlet Series

We introduce a concept called good oscillation. A function is called good oscillation, if its m-tuple integrals are bounded by functions having mild orders. We prove that if the error terms coming from summatory functions of arithmetical functions are good oscillation, then the Dirichlet series associated with those arithmetical functions can be continued analytically over the whole plane. We a...

متن کامل

Analytic properties of a certain multiple Dirichlet series

We consider a certain multiple Dirichlet series which is a generalization of that introduced in Masri, and we prove the meromorphic continuation to the whole space. Also, using certain functional relations and the technique of chaging variables introduced in Akiyama, Egami and Tanigawa, we prove that " the possible singularities " is indeed " the true singularities " .

متن کامل

On Kubota’s Dirichlet Series

Kubota [19] showed how the theory of Eisenstein series on the higher metaplectic covers of SL2 (which he discovered) can be used to study the analytic properties of Dirichlet series formed with n-th order Gauss sums. In this paper we will prove a functional equation for such Dirichlet series in the precise form required by the companion paper [2]. Closely related results are in Eckhardt and Pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1964

ISSN: 0025-5645

DOI: 10.2969/jmsj/01630214